Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 185(1): 145-157.e13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995513

RESUMO

Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Biofilmes/crescimento & desenvolvimento , Padronização Corporal/genética , Bacillus subtilis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Transdução de Sinais/genética , Somitos/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Tempo
2.
Cell ; 177(2): 352-360.e13, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30853217

RESUMO

Bacteria exhibit cell-to-cell variability in their resilience to stress, for example, following antibiotic exposure. Higher resilience is typically ascribed to "dormant" non-growing cellular states. Here, by measuring membrane potential dynamics of Bacillus subtilis cells, we show that actively growing bacteria can cope with ribosome-targeting antibiotics through an alternative mechanism based on ion flux modulation. Specifically, we observed two types of cellular behavior: growth-defective cells exhibited a mathematically predicted transient increase in membrane potential (hyperpolarization), followed by cell death, whereas growing cells lacked hyperpolarization events and showed elevated survival. Using structural perturbations of the ribosome and proteomic analysis, we uncovered that stress resilience arises from magnesium influx, which prevents hyperpolarization. Thus, ion flux modulation provides a distinct mechanism to cope with ribosomal stress. These results suggest new approaches to increase the effectiveness of ribosome-targeting antibiotics and reveal an intriguing connection between ribosomes and the membrane potential, two fundamental properties of cells.


Assuntos
Membrana Externa Bacteriana/metabolismo , Magnésio/metabolismo , Ribossomos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteômica , Proteínas Ribossômicas/metabolismo
3.
Cell ; 170(1): 214-214.e1, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666120

RESUMO

The role of electricity in biological systems was first appreciated through electrical stimulation experiments performed by Luigi Galvani in the 18th century. These pioneering experiments demonstrated that the behavior of living tissues is governed by the flow of electrochemical species-an insight that gave rise to the modern field of electrophysiology. Since then, electrophysiology has largely remained a bastion of neuroscience. However, exciting recent developments have demonstrated that even simple bacteria residing in communities use electrochemical communication to coordinate population-level behaviors. These recent works are defining the emerging field of bacterial biofilm electrophysiology. To view this SnapShot, open or download the PDF.


Assuntos
Biofilmes , Bactérias/classificação , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Fenômenos Eletrofisiológicos
4.
Science ; 356(6338): 638-642, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28386026

RESUMO

Bacteria within communities can interact to organize their behavior. It has been unclear whether such interactions can extend beyond a single community to coordinate the behavior of distant populations. We discovered that two Bacillus subtilis biofilm communities undergoing metabolic oscillations can become coupled through electrical signaling and synchronize their growth dynamics. Coupling increases competition by also synchronizing demand for limited nutrients. As predicted by mathematical modeling, we confirm that biofilms resolve this conflict by switching from in-phase to antiphase oscillations. This results in time-sharing behavior, where each community takes turns consuming nutrients. Time-sharing enables biofilms to counterintuitively increase growth under reduced nutrient supply. Distant biofilms can thus coordinate their behavior to resolve nutrient competition through time-sharing, a strategy used in engineered systems to allocate limited resources.


Assuntos
Bacillus subtilis/classificação , Bacillus subtilis/fisiologia , Biofilmes , Interações Microbianas , Bacillus subtilis/crescimento & desenvolvimento , Fenômenos Eletrofisiológicos , Modelos Biológicos , Transdução de Sinais
5.
Nature ; 523(7562): 550-4, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200335

RESUMO

Cells that reside within a community can cooperate and also compete with each other for resources. It remains unclear how these opposing interactions are resolved at the population level. Here we investigate such an internal conflict within a microbial (Bacillus subtilis) biofilm community: cells in the biofilm periphery not only protect interior cells from external attack but also starve them through nutrient consumption. We discover that this conflict between protection and starvation is resolved through emergence of long-range metabolic co-dependence between peripheral and interior cells. As a result, biofilm growth halts periodically, increasing nutrient availability for the sheltered interior cells. We show that this collective oscillation in biofilm growth benefits the community in the event of a chemical attack. These findings indicate that oscillations support population-level conflict resolution by coordinating competing metabolic demands in space and time, suggesting new strategies to control biofilm growth.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Biofilmes/crescimento & desenvolvimento , Compostos de Amônio/metabolismo , Compostos de Amônio/farmacologia , Bacillus subtilis/citologia , Bacillus subtilis/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Fenômenos Cronobiológicos , Retroalimentação Fisiológica , Alimentos , Técnicas Analíticas Microfluídicas
6.
Cell ; 162(2): 328-337, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26165942

RESUMO

Genes encoding proteins in a common regulatory network are frequently located close to one another on the chromosome to facilitate co-regulation or couple gene expression to growth rate. Contrasting with these observations, here, we demonstrate a functional role for the arrangement of Bacillus subtilis sporulation network genes on opposite sides of the chromosome. We show that the arrangement of two sporulation network genes, one located close to the origin and the other close to the terminus, leads to a transient gene dosage imbalance during chromosome replication. This imbalance is detected by the sporulation network to produce cell-cycle coordinated pulses of the sporulation master regulator Spo0A∼P. This pulsed response allows cells to decide between sporulation and continued vegetative growth during each cell cycle spent in starvation. The simplicity of this coordination mechanism suggests that it may be widely applicable in a variety of gene regulatory and stress-response settings. VIDEO ABSTRACT.


Assuntos
Bacillus subtilis/fisiologia , Esporos Bacterianos/fisiologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos , Replicação do DNA , Retroalimentação , Dosagem de Genes , Fosforilação , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...